Methods of Soil Analysis. Part 4. Physical Methods (Φυσικές μέθοδοι ανάλυσης εδάφους - έκδοση στα αγγλικά)
Methods of Soil Analysis. Part 4. Physical Methods
Συγγραφέας: J.H. Dane, G.C. Topp
ISBN: 9780891188414
Σελίδες: 1692
Σχήμα: 16 Χ 24
Εξώφυλλο: Σκληρό
Έτος έκδοσης: 2002
DESCRIPTION
The best single reference for both the theory and practice of soil physical measurements, Methods, Part 4 adopts a more hierarchical approach to allow readers to easily find their specific topic or measurement of interest. As such it is divided into eight main chapters on soil sampling and statistics, the solid, solution, and gas phases, soil heat, solute transport, multi-fluid flow, and erosion. More than 100 world experts contribute detailed sections.
CONTENTS
FOREWORD
PREFACE
CONTRIBUTORS
CONVERSION FACTORS FOR SI AND NON-SI UNITS
Chapter 1 Soil Sampling and Statistical Procedures
1.1 Introduction A.W. WARRICK AND H.M. VAN ES
1.2 Soil Variability H.M. VAN ES
1.2.1 Sources and Structure of Variability
1.2.1.1 Introduction
1.2.1.2 Properties and Processes
1.2.1.3 Sources of Variability
1.2.1.4 Structure of Variability
1.2.2 Variability and Scale
1.2.2.1 Scale of Research Domain
1.2.2.2 Scale of Observation
1.2.3 References
1.3 Errors, Variability, and Precision R.R. ALLMARAS AND OSCAR KEMPTHORNE
1.3.1 Introduction
1.3.2 Classification of Measurement Errors
1.3.3 Scientific Validity of Measurements
1.3.4 Characterization of Variability
1.3.5 Skewed Frequency Distributions
1.3.5.1 Impact of Mathematical Distribution on Imprecision
1.3.6 Transformations of a Random Variable or Functions of a Random (Explanatory) Variable
1.3.7 The Estimation of Precision
1.3.8 Precision of Derived Observations
1.3.8.1 Case 1: A Single-Valued Function of an Observation
1.3.8.2 Case 2: A Number Derived from Measurements of More Than One Attribute on the Same Sample
1.3.8.3 Case 3: A Single Function of Numerous Measurements with Same Attribute
1.3.9 Error Propagation in Modeling
1.3.10 The Roles of Bias and Precision
1.3.11 How to Study Errors of Observation
1.3.12 Role of Errors of Observation in the Study of Relationships
1.3.13 A Note on Terminology
1.3.14 Statistical Problems and Techniques in General
1.3.15 References
1.4 Sampling J. J. DE GRUIJTER
1.4.1 Designing a Sampling Scheme
1.4.1.1 Towards Better Planning
1.4.1.2 A Guiding Principle in Designing Sampling Schemes
1.4.1.3 Practical Issues
1.4.1.4 Scientific Issues
1.4.1.5 Statistical Issues
1.4.2 Design-Based and Model-Based Approach
1.4.3 Design-Based Strategies
1.4.3.1 Scope of Design-Based Strategies
1.4.3.2 Simple Random Sampling
1.4.3.3 Stratified Sampling
1.4.3.4 Two-Stage Sampling
1.4.3.5 Cluster Sampling
1.4.3.6 Systematic Sampling
1.4.3.7 Advanced Design-Based Strategies
1.4.4 Model-Based Strategies
1.4.5 Composite Sampling
1.4.6 Sampling in Dimensions Other than Two-Dimensional Space
1.4.6.1 Sampling in Three-Dimensional Space and at Depth
1.4.6.2 Sampling in Time
1.4.6.3 Sampling in Space-Time
1.4.7 References
1.5 Geostatistics S.R. YATES AND A.W. WARRICK
1.5.1 Introduction
1.5.1.1 Geostatistical Investigations
1.5.2 Using Geostatistical Methods
1.5.2.1 Sampling
1.5.2.2 Spatial Autocorrelation
1.5.2.3 Geostatistics and Estimation
1.5.2.4 Geostatistics and Uncertainty
1.5.3 Appendices
1.5.3.1 Selected Windows-Based Geostatistical Software
1.5.3.2 Simulating Random Fields
1.5.4 References
1.6 Time and Space Series O. WENDROTH AND D.R. NIELSEN
1.6.1 General Information
1.6.2 Auto- and Cross-Correlation
1.6.3 Spectral Analysis
1.6.4 State-Space Analysis
1.6.4.1 Autoregressive State-Space Model for Spatial Processes
1.6.4.2 State-Space Analysis for Time Series
1.6.5 References
1.7 Parameter Optimization and Nonlinear Fitting JIÍ ŠIMNEK AND JAN W. HOPMANS
1.7.1 Introduction
1.7.2 Maximum-Likelihood and Weighted Least-Squares Estimator
1.7.3 Methods of Solution
1.7.4 Correlation and Confidence Intervals
1.7.5 Goodness of Fit
1.7.6 Examples and Optimization Programs
1.7.7 Discussion
1.7.8 References
1.8 Newer Application Techniques ALEX. B. MCBRATNEY, ALISON N. ANDERSON, R. MURRAY
LARK, AND INAKWU O. ODEH
1.8.1 Fractal Dimensions A.N. ANDERSON AND A.B. MCBRATNEY
1.8.1.1 Theory
1.8.1.2 Quantifying Soil Structure Using Fractal Geometry
1.8.1.3 Applications of Fractal Geometry to Soil Physics
1.8.1.4 Characterizing Soil Spatial Variability Using Fractal Geometry
1.8.1.5 Future Prospects
1.8.2 Fuzzy Sets I.O. ODEH AND A.B. MCBRATNEY
1.8.2.1 The Concept of Fuzzy Sets
1.8.2.2 Some Definitions and Examples Related to Fuzzy Sets
1.8.2.3 Fuzzy Models of Soil Physical Processes: Example
1.8.2.4 Application to Soil Classification, Mapping, and Land Evaluation
1.8.3 Wavelet Analysis R.M. LARK AND A.B. MCBRATNEY
1.8.3.1 The Continuous Wavelet Transform
1.8.3.2 The Discrete Wavelet Transform
1.8.3.3 Prospects for Wavelet Analysis
1.8.4 References
Chapter 2 The Solid Phase
2.1 Bulk Density and Linear Extensibility R.B. GROSSMAN AND T.G. REINSCH
2.1.1 Introduction
2.1.1.1 Principles
2.1.1.2 Variability
2.1.1.3 Application
2.1.1.4 Dealing with Rock Fragments
2.1.2 Core Method
2.1.2.1 Introduction
2.1.2.2 Method
2.1.2.3 Comments
2.1.3 Excavation Method
2.1.3.1 Introduction
2.1.3.2 Method
2.1.3.3 Comments
2.1.4 Clod Method
2.1.4.1 Introduction
2.1.4.2 Equipment and Supplies
2.1.4.3 Procedure
2.1.4.4 Comments
2.1.5 Radiation Methods
2.1.5.1 Introduction
2.1.5.2 Equipment and Procedures
2.1.5.3 Comment
2.1.6 Linear Extensibility
2.1.6.1 Introduction
2.1.6.2 Calculations
2.1.6.3 Comments
2.1.7 References
2.2 Particle Density ALAN L. FLINT AND LORRAINE E. FLINT
2.2.1 Introduction
2.2.2 Principles
2.2.3 Methods
2.2.3.1 Calculation from Porosity and Bulk Density
2.2.3.2 Liquid Displacement
2.2.3.3 Gas Displacement
2.2.3.4 Estimation from Constituent Properties
2.2.4 Comments
2.2.5 References
2.3 Porosity LORRAINE E. FLINT AND ALAN L. FLINT
2.3.1 Introduction
2.3.2 Total Porosity
2.3.2.1 Calculation from Particle and Bulk Densities
2.3.2.2 Gravimetric Method with Water Saturation
2.3.2.3 Volumetric Method with Gas Pycnometry
2.3.3 Pore-Size Distribution
2.3.3.1 Water-Desorption Method
2.3.3.2 Visualization Method Using Impregnation
2.3.3.3 Mercury-Porosimetry Method
2.3.4 References
2.4 Particle-Size Analysis GLENDON W. GEE AND DANI OR
2.4.1 Introduction
2.4.2 Pretreatment and Dispersion Techniques
2.4.2.1 General Principles
2.4.2.2 Organic Matter Removal
2.4.2.3 Iron Oxide Removal
2.4.2.4 Carbonate Removal
2.4.2.5 Soluble Salts Removal
2.4.2.6 Sample Dispersion
2.4.3 Specific Methods of Particle-Size Analysis
2.4.3.1 Introduction
2.4.3.2 Analysis by Sieving
2.4.3.3 Analysis by Gravitational Sedimentation
2.4.3.4 Pipette Method
2.4.3.5 Hydrometer Method
2.4.3.6 Modern Methods for Particle-Size Measurement
2.4.4 References
2.5 Specific Surface Area K.D. PENNELL
2.5.1 Introduction
2.5.2 Liquid-Phase Adsorption Methods
2.5.2.1 Principles
2.5.2.2 Equipment and Supplies
2.5.2.3 Experimental Procedure
2.5.2.3 Comments
2.5.3 Gas-Phase Adsorption Methods
2.5.3.1 Principles
2.5.3.2 Equipment and Supplies
2.5.3.3 Experimental Procedure
2.5.3.4 Comments
2.5.4 Retention of Polar Liquids
2.5.4.1 Principles
2.5.4.2 Equipment and Supplies
2.5.4.3 Experimental Procedure
2.5.4.4 Comments
2.5.5 Comparison of Surface Area Methods
2.5.6 References
2.6 Aggregate Stability and Size Distribution JOHN R. NIMMO AND KIM S. PERKINS
2.6.1 Principles
2.6.2 Apparatus and Procedures
2.6.2.1 General Sample Preparation
2.6.2.2 Modifications of Informally Standardized Methods and Apparatus
2.6.2.3 Representation of Data
2.6.3 Comments
2.6.4 References
2.7 Shear Strength of Unsaturated Soils D.G. FREDLUND AND S.K. VANAPALLI
2.7.1 Introduction
2.7.2 Shear Strength Equation for Unsaturated Soils
2.7.3 Triaxial Shear Tests for Unsaturated Soils
2.7.3.1 Test Procedures for Triaxial Tests
2.7.4 Direct Shear Tests for Unsaturated Soils
2.7.5 Failure Criteria for Unsaturated Soils
2.7.5.1 Strain Rates for Triaxial and Direct Shear Tests
2.7.6 Interpretation of Drained Test Results Using Multistage Testing Procedures
2.7.7 Nonlinearity of Failure Envelope
2.7.8 Interpretation of Undrained Test Results
2.7.8.1 Confined Compression Tests
2.7.8.2 Unconfined Compression Tests
2.7.9 Relationship Between the Soil-Water Characteristic Curve and the Shear Strength of Unsaturated Soils
2.7.10 Procedure for Predicting the Shear Strength of Unsaturated Soils
2.7.11 Summary
2.7.12 References
2.8 Soil Penetrometers and Penetrability BIRL LOWERY AND JOHN E. MORRISON, JR.,
2.8.1 Introduction
2.8.2 Principles
2.8.2.1 Soil Mechanics Associated with Penetrometers
2.8.3 Equipment, Software, and Supplies
2.8.3.1 Penetrometer Rod or Shaft and Active Element
2.8.3.2 Force-Sensing Apparatus
2.8.3.3 Depth-Sensing Apparatus
2.8.3.4 Structure of Penetrometer
2.8.3.5 Data Logging
2.8.4 Data Logging Operational Details for Specific Penetrometers
2.8.4.1 Pocket Penetrometer
2.8.4.2 Cone Penetrometer
2.8.4.3 Friction-Sleeve Cone Penetrometer
2.8.5 Summary
2.8.6 References
2.9 Atterberg Limits R.A. MCBRIDE
2.9.1 Introduction
2.9.2 Liquid Limit
2.9.2.1 Casagrande Method
2.9.2.2 One-Point Casagrande Method
2.9.2.3 Drop-Cone Penetrometer Method
2.9.3 Plastic Limit
2.9.3.1 Casagrande Method
2.9.4 References
2.10 Soil Compressibility S.C. GUPTA, J.M. BRADFORD, AND A. DRESCHER
2.10.1 Introduction
2.10.2 Principles
2.10.3 Methods
2.10.3.1 Apparatus
2.10.3.2 Procedure
2.10.4 Comments
2.10.5 References
Chapter 3 The Soil Solution Phase
3.1 Water Content
3.1.1 General Information G. CLARKE TOPP AND P.A. (TY) FERRÉ
3.1.2 Scope of Methods and Brief Description G. CLARKE TOPP AND P.A. (TY) FERRÉ
3.1.2.1 Thermogravimetric Method Using Convective Oven-Drying
3.1.2.2 Gravimetric Method Using Microwave Oven Heating
3.1.2.3 Time Domain Reflectometry
3.1.2.4 Ground Penetrating Radar
3.1.2.5 Capacitance Devices
3.1.2.6 Radar Scatterometry or Active Microwave
3.1.2.7 Passive Microwave
3.1.2.8 Electromagnetic Induction
3.1.2.9 Neutron Thermalization
3.1.2.10 Nuclear Magnetic Resonance
3.1.2.11 Gamma Ray Attenuation
3.1.3 Methods for Measurement of Soil Water Content G. CLARKE TOPP AND P.A. (TY) FERRÉ
3.1.3.1 Thermogravimetric Using Convective Oven-Drying G. CLARKE TOPP AND P.A. (TY) FERRÉ
3.1.3.2 Gravimetric Using Microwave Oven-Drying G. CLARKE TOPP AND P.A. (TY) FERRÉ
3.1.3.3 The Basis of Electromagnetic Methods: A Wave Equation Framework
3.1.3.4 Time Domain Reflectometry P.A. (TY) FERRÉ AND G. CLARKE TOPP
3.1.3.5 Ground Penetrating Radar to Measure Soil Water Content J. LES DAVIS AND A.P. ANNAN
3.1.3.6 Capacitance Devices JAMES L. STARR AND IOAN C. PALTINEANU
3.1.3.7 Active Microwave Remote Sensing Methods H. MCNAIRN, T.J. PULTZ, AND J.B. BOISVERT
3.1.3.8 Passive Microwave Remote Sensing Methods THOMAS J. JACKSON
3.1.3.9 Electromagnetic Induction R.G. KACHANOSKI, JAN M.H. HENDRICKX, AND E. DE JONG
3.1.3.10 Neutron Thermalization CLIFF HIGNETT AND STEVEN R. EVETT
3.1.3.11 Nuclear Magnetic Resonance CAROLINE M. PRESTON
3.1.4 References
3.2 Water Potential
3.2.1 Piezometry MICHAEL H. YOUNG
3.2.1.1 Introduction
3.2.1.2 Principles
3.2.1.3 Drilling Methods
3.2.1.4 Installation
3.2.1.5 Monitoring
3.2.1.6 Technical Considerations
3.2.1.7 References
3.2.2 Tensiometry MICHAEL H. YOUNG AND JAMES B. SISSON
3.2.2.1 Introduction
3.2.2.2 Soil Water Matric Potential
3.2.2.3 Principles
3.2.2.4 Essential Components of Tensiometers
3.2.2.5 Alternative Types of Tensiometers
3.2.2.6 Field and Laboratory Applications
3.2.2.7 Field Measurements
3.2.2.8 Laboratory Measurements
3.2.2.9 Interpretation of Tensiometric Readings
3.2.2.10 Gauge Calibration
3.2.2.11 References
3.2.3 Thermocouple Psychrometry BRIAN J. ANDRASKI AND BRIDGET R. SCANLON
3.2.3.1 Principles
3.2.3.2 Equipment
3.2.3.3 Procedures
3.2.3.4 Comments
3.2.3.5 Commercial Sources
3.2.3.6 References
3.2.4 Miscellaneous Methods for Measuring Matric or Water Potential BRIDGET R. SCANLON, BRIAN J.
ANDRASKI, AND JIM BILSKIE
3.2.4.1 Introduction
3.2.4.2 Heat Dissipation Sensors
3.2.4.3 Electrical Resistance Sensors
3.2.4.4 Frequency Domain and Time Domain Matric Potential Sensors
3.2.4.5 Electro-Optical Switches
3.2.4.6 Dew Point Potentiameter
3.2.4.7 Filter Paper Technique
3.2.4.8 Vapor Equilibration
3.2.4.9 References
3.3 Water Retention and Storage
3.3.1 Introduction J.H. DANE AND J.W. HOPMANS
3.3.1.1 References
3.3.2 Laboratory
3.3.2.1 Introduction J.H. DANE AND J.W. HOPMANS
3.3.2.2 Hanging Water Column J.H. DANE AND J.W. HOPMANS
3.3.2.3 Pressure Cell J.H. DANE AND J.W. HOPMANS
3.3.2.4 Pressure Plate Extractor J.H. DANE AND J.W. HOPMANS
3.3.2.5 Long Column J.H. DANE AND J.W. HOPMANS
3.3.2.6 Suction Table N. ROMANO, J.W. HOPMANS, AND J.H. DANE
3.3.2.7 Controlled Liquid Volume K.A. WINFIELD AND J.R. NIMMO
3.3.2.8 Determination of Soil Water Characteristic by Freezing Method E.J.A. SPAANS AND J.M. BAKER
3.3.2.9 Miscellaneous Methods J.R. NIMMO AND K.A. WINFIELD
3.3.2.10 Computational Corrections J.H. DANE AND J.W. HOPMANS
3.3.2.11 Guidelines For Method Selection J.R. NIMMO
3.3.2.12 References
3.3.3 Field NUNZIO ROMANO AND ALESSANDRO SANTINI
3.3.3.1 Introduction
3.3.3.2 Field Water Capacity
3.3.3.3 Permanent Wilting Point
3.3.3.4 Available Water
3.3.3.5 Specific Yield
3.3.3.6 References
3.3.4 Parametric Models KEN'ICHIROU KOSUGI, JAN W. HOPMANS, AND JACOB H. DANE
3.3.4.1 Introduction
3.3.4.2 General Characteristics of Water Retention Curves and Important Parameters
3.3.4.3 Brooks and Corey Type Power Function
3.3.4.4 van Genuchten Type Power Function
3.3.4.5 Exponential Function
3.3.4.6 Lognormal Distribution Function
3.3.4.7 Water Capacity Functions
3.3.4.8 Unsaturated Hydraulic Conductivity Functions
3.3.4.9 Multimodal Retention Functions
3.3.4.10 Soil Water Hysteresis
3.3.4.11 Model Fitting
3.3.4.12 Comments
3.3.4.13 References
3.3.5 Property-Transfer Models RANDEL HAVERKAMP, PAOLO REGGIANI, AND JOHN R. NIMMO
3.3.5.1 Physically Based Water Retention Prediction Models RANDEL HAVERKAMP AND PAOLO
REGGIANI
3.3.5.2 Property Transfer from Particle and Aggregate Size to Water Retention JOHN R. NIMMO
3.3.5.3 References
3.3.6 Air-Water Interfacial Area P.S.C. RAO, HEONKI KIM, AND MICHAEL D. ANNABLE
3.3.6.1 Introduction
3.3.6.2 Principles
3.3.6.3 Aqueous-Static Method
3.3.6.4 Aqueous-Dynamic Method
3.3.6.5 Gaseous-Dynamic Method
3.3.6.6 Comments
3.3.6.7 References
3.4 Saturated and Field-Saturated Water Flow Parameters W.D. REYNOLDS, D. E. ELRICK, E. G.
YOUNGS, AZIZ AMOOZEGAR, H. W. G. BOOLTINK, AND J. BOUMA
3.4.1 Introduction
3.4.1.1 Principles and Parameter Definitions W.D. REYNOLDS AND D. E. ELRICK
3.4.1.2 References
3.4.2 Laboratory Methods W.D. REYNOLDS, D.E. ELRICK, H.W.G. BOOLTINK, AND J. BOUMA
3.4.2.1 Introduction
3.4.2.2 Constant Head Soil Core (Tank) Method W.D. REYNOLDS AND D.E. ELRICK
3.4.2.3 Falling Head Soil Core (Tank) Method W.D. REYNOLDS AND D.E. ELRICK
3.4.2.4 Steady Flow Soil Column Method H.W.G. BOOLTINK AND J. BOUMA
3.4.2.5 Other Laboratory Methods W. D. REYNOLDS AND D.E. ELRICK
3.4.2.6 References
3.4.3 Field Methods (Vadose and Saturated Zone Techniques) W.D. REYNOLDS, D.E. ELRICK, E.G.
YOUNGS, AND AZIZ AMOOZEGAR
3.4.3.1 Introduction
3.4.3.2 Ring or Cylinder Infiltrometers (Vadose Zone) W.D. REYNOLDS, D.E. ELRICK, AND E.G.
YOUNGS
3.4.3.2.a Single-Ring and Double- or Concentric-Ring Infiltrometers W.D. REYNOLDS, D.E. ELRICK,
AND E.G. YOUNGS
3.4.3.2.b Pressure Infiltrometer W.D. REYNOLDS AND D.E. ELRICK
3.4.3.2.c Twin- or Dual-Ring and Multiple-Ring Infiltrometers W.D. REYNOLDS, D.E. ELRICK, AND
E.G. YOUNGS
3.4.3.2.d References
3.4.3.3 Constant Head Well Permeameter (Vadose Zone) W.D. REYNOLDS AND D.E. ELRICK
3.4.3.4 Auger-Hole Method (Saturated Zone) AZIZ AMOOZEGAR
3.4.3.5 Piezometer Method (Saturated Zone) AZIZ AMOOZEGAR
3.4.3.6 Other Saturated Zone Methods
3.5 Unsaturated Water Transmission Parameters Obtained from Infiltration BRENT CLOTHIER AND
DAVID SCOTTER
3.5.1 Basic Theory
3.5.2 One-Dimensional Infiltration Equations and Their Use
3.5.3 Horizontal Absorption--The Bruce and Klute Experiment
3.5.4 Three-Dimensional Infiltration Using Disk Permeameters
3.5.4.1 Early-Time Observations J.-P. VANDERVAERE
3.5.4.2 Steady-State Observations BRENT CLOTHIER AND DAVID SCOTTER
3.5.5 Conclusions
3.5.6 References
3.6 Simultaneous Determination of Water Transmission and Retention Properties
3.6.1 Direct Methods
3.6.1.1 Laboratory
3.6.1.1.a Long Column ARTHUR T. COREY
3.6.1.1.b Steady-State Centrifuge JOHN R. NIMMO, KIM PERKINS, AND ANGUS LEWIS
3.6.1.1.c Wind and Hot-Air Methods LALIT M. ARYA
3.6.1.1.d Suction Crust Infiltrometer H.W.G. BOOLTINK AND J. BOUMA
3.6.1.1.e Bypass Flow
3.6.1.1.f References
3.6.1.2 Field
3.6.1.2.a Instantaneous Profile GEORGES VACHAUD AND J.H. DANE
3.6.1.2.b Plane of Zero Flux LALIT M. ARYA
3.6.1.2.c Constant Flux Vertical Time Domain Reflectometry GARY W. PARKIN AND R. GARY
KACHANOSKI
3.6.1.2.d References
3.6.2 Inverse Methods J.W. HOPMANS, J. ŠIMNEK, N. ROMANO, AND W. DURNER
3.6.2.1 Introduction
3.6.2.2 Theory of Flow and Optimization
3.6.2.3 Multi-Step Outflow Method
3.6.2.4 Evaporation Method
3.6.2.5 Tension Disc Infiltrometer
3.6.2.6 Field Drainage
3.6.2.7 Additional Applications
3.6.2.8 Example
3.6.2.9 Discussion
3.6.2.10 References
3.6.3 Indirect Methods FEIKE J. LEIJ, MARCEL G. SCHAAP, AND LALIT M. ARYA
3.6.3.1 Introduction
3.6.3.2 Semiempirical Approaches
3.6.3.3 Empirical Approaches
3.6.3.4 References
3.7 Evaporation from Natural Surfaces JOHN M. BAKER AND JOHN M. NORMAN
3.7.1 Soil-Based Methods
3.7.1.1 Lysimetry
3.7.1.2 Soil Water Balance
3.7.2 Plant-Based Methods
3.7.2.1 Sap Flow Measurement
3.7.2.2 Cuvettes
3.7.3 Micrometeorological Methods
3.7.3.1 Bowen Ratio Energy Balance Method
3.7.3.2 Eddy Covariance
3.7.3.3 Conditional Sampling
3.7.4 Remote Sensing Methods
3.7.5 References
Chapter 4 The Soil Gas Phase
4.1 Introduction DENNIS E. ROLSTON
4.1.1 References
4.2 Gas Sampling and Analysis RICHARD E. FARRELL, EELTJE DE JONG, AND JANE A. ELLIOTT
4.2.1 Principles
4.2.2 Sampling
4.2.2.1 Air-Filled Pores Above the Water Table
4.2.2.2 Soil Water Sampling
4.2.3 Gas Analysis
4.2.3.1 Principles of Gas Chromatography
4.2.3.2 Laboratory Analysis by Gas Chromatography
4.2.3.3 Field-Based Gas Chromatography Systems
4.2.3.4 Alternative Gas Analysis Systems
4.2.4 In Situ Analyses at the Gas-Liquid Interface
4.2.4.1 Platinum Microelectrode Methods
4.2.4.2 Membrane-Covered Electrode Methods
4.2.4.3 Miscellaneous Gas-Sensing Probes
4.2.5 References
4.3 Gas Diffusivity DENNIS E. ROLSTON AND PER MOLDRUP
4.3.1 Introduction
4.3.2 Laboratory Methods
4.3.2.1 The Currie Method
4.3.2.2 The Two-Chamber Method
4.3.3 Field Method
4.3.3.1 The MacIntyre and Philip Method
4.3.4 Predicting Gas Diffusivity
4.3.4.1 Undisturbed Soil
4.3.4.2 Sieved, Repacked Soil
4.3.4.3 Values of D0
4.3.5 References
4.4 Air Permeability BRUCE C. BALL AND PER SCHJØNNING
4.4.1 Introduction
4.4.2 Laboratory Methods
4.4.3 Field Methods
4.4.3.1 Acoustic Method
4.4.3.2 Buried Probe and Well Techniques
4.4.4 Recommended Laboratory Method
4.4.4.1 Apparatus and Materials
4.4.4.2 Procedures
4.4.4.3 Comments
4.4.5 Recommended Field Method
4.4.5.1 Apparatus and Materials
4.4.5.2 Procedures
4.4.5.3 Comments
4.4.6 Choice of Method, Including Scaling and Variability Aspects
4.4.7 Predicting Air Permeability
4.4.8 Conclusions and Summary
4.4.9 References
4.5 Soil-Atmosphere Gas Exchange GORDON L. HUTCHINSON AND GERALD P. LIVINGSTON
4.5.1 Introduction
4.5.2 Computation from Fick's Law
4.5.2.1 Principles
4.5.2.2 Apparatus, Materials, and Procedure
4.5.2.3 Comments and Cautions
4.5.3 Chamber Systems
4.5.3.1 Principles
4.5.3.2 Apparatus and Materials
4.5.3.3 Procedure
4.5.3.4 Comments and Cautions
4.5.4 Sampling Design, Data Analyses, and Data Summaries
4.5.5 Concluding Remarks
4.5.6 References
Chapter 5 Soil Heat
5.1 Temperature KEVIN J. MCINNES
5.1.1 Thermocouple Thermometry
5.1.2 Integrated Circuit Thermometers
5.1.3 Resistance Thermometers
5.1.3.1 Platinum Resistance Thermometers
5.1.3.2 Resistance Temperature Detectors
5.1.3.3 Thermistors
5.1.4 Nonelectric Thermometers
5.1.5 Infrared Radiation Thermometers
5.1.6 Installation and Operation
5.1.7 References
5.2 Heat Capacity and Specific Heat G. J. KLUITENBERG
5.2.1 General Introduction
5.2.2 General Principles
5.2.2.1 Basic Definitions
5.2.2.2 Relationship between Volumetric Heat Capacity and Specific Heat
5.2.3 Methods
5.2.3.1 De Vries Approximation
5.2.3.2 Dual-Probe Heat-Pulse Method
5.2.4 References
5.3 Thermal Conductivity KEITH L. BRISTOW
5.3.1 Introduction
5.3.2 Predictive Methods
5.3.2.1 Predicting Soil Thermal Conductivity, Including Temperature Effects
5.3.2.2 Predicting Soil Thermal Conductivity from Readily Available Soils Data
5.3.3 Steady-State Methods
5.3.3.1 Guarded Hot Plate Method
5.3.4 Transient-State Methods
5.3.4.1 Theory
5.3.4.2 Probe Design and Construction
5.3.4.3 Single Heat Probe Method
5.3.4.4 Dual-Probe Heat-Pulse Method
5.3.5 Comments Concerning Thermal Conductivity
5.3.6 References
5.4 Soil Thermal Diffusivity ROBERT HORTON
5.4.1 Laboratory Method for Determining Soil Thermal Diffusivity
5.4.1.1 Principles
5.4.1.2 Measurements
5.4.1.3 Analysis of Soil Column Temperature Observations
5.4.2 Field Method for Determining Soil Thermal Diffusivity
5.4.3 References
5.5 Heat Flux Density THOMAS J. SAUER
5.5.1 Calorimetric
5.5.1.1 Principles
5.5.1.2 Equipment
5.5.1.3 Procedures
5.5.1.4 Commentary on Advantages and Limitations
5.5.2 Gradient
5.5.2.1 Principles
5.5.2.2 Equipment
5.5.2.3 Procedures
5.5.2.4 Commentary on Advantages and Limitations
5.5.3 Combination
5.5.3.1 Principles
5.5.3.2 Equipment
5.5.3.3 Procedures
5.5.3.4 Commentary on Advantages and Limitations
5.5.4 Soil Heat Flux Plate
5.5.4.1 Principles
5.5.4.2 Equipment
5.5.4.3 Procedures
5.5.4.4 Commentary on Advantages and Limitations
5.5.5 References
5.6 Coupled Heat and Water Transfer I.N. NASSAR AND R. HORTON
5.6.1 Introduction
5.6.2 Soil Thermal Water Diffusivity
5.6.3 References
Chapter 6 Miscible Solute Transport
6.1 Solute Content and Concentration
6.1.1 Introduction JAN M.H. HENDRICKX, JON M. WRAITH, DENNIS L. CORWIN, AND R. GARY
KACHANOSKI
6.1.2 Measurement of Solute Content Using Soil Extraction JAN M.H. HENDRICKX AND LOUIS W.
DEKKER
6.1.2.1 General Principles
6.1.2.2 Equipment
6.1.2.3 Procedure
6.1.2.4 Comments
6.1.3 Measurement of Solute Concentration Using Soil Water Extraction
6.1.3.1 Suction Cups DENNIS L. CORWIN
6.1.3.2 Passive Capillary Samplers JOHN SELKER
6.1.3.3 Porous Matrix Sensors DENNIS L. CORWIN
6.1.4 Indirect Measurement of Solute Concentration JAN M.H. HENDRICKX, B. DAS, DENNIS L.
CORWIN, JON M. WRAITH, AND R. GARY KACHANOSKI
6.1.4.1 Relationship between Soil Water Solute Concentration and Apparent Soil Electrical Conductivity
JAN M.H. HENDRICKX, B. DAS, DENNIS L. CORWIN, JON M. WRAITH AND R. GARY
KACHANOSKI
6.1.4.2 Electrical Resistivity: Wenner Array DENNIS L. CORWIN AND JAN M.H. HENDRICKX
6.1.4.3 Electrical Resistivity: Four-Electrode Probe DENNIS L. CORWIN
6.1.4.4 Time Domain Reflectometry JON M. WRAITH
6.1.4.5 Nonintrusive Electromagnetic Induction JAN M.H. HENDRICKX AND R. GARY KACHANOSKI
6.1.5 Emerging Methods JAN M.H. HENDRICKX
6.1.5.1 Fiber Optic Sensors JAN M.H. HENDRICKX
6.1.5.2 Capillary Absorbers C. KELLER AND JAN M.H. HENDRICKX
6.1.6 References
6.2. Solute Diffusion MARKUS FLURY AND THOMAS F. GIMMI
6.2.1 Introduction
6.2.2 Theory of Diffusion
6.2.2.1 Fick's Laws of Diffusion
6.2.2.2 Estimation of Diffusion Coefficients in Liquids
6.2.2.3 Temperature Dependence of Diffusion Coefficients
6.2.2.4 Type of Diffusion Coefficient
6.2.2.5 Diffusion of Nonreactive Solutes in Porous Media
6.2.2.6 Estimation of Diffusion Coefficients for Nonreactive Solutes in Porous Media
6.2.2.7 Diffusion and Convection
6.2.2.8 Diffusion and Reactions
6.2.3 Methods
6.2.3.1 Steady-State Methods
6.2.3.2 Transient Methods
6.2.3.3 Other Methods
6.2.4 Conclusions
6.2.5 References
6.3 Solute Transport: Theoretical Background TODD H. SKAGGS AND FEIKE J. LEIJ
6.3.1 Elementary Concepts
6.3.1.1 Solute Transport Experiments
6.3.1.2 Breakthrough Curves
6.3.1.3 Moments
6.3.1.4 Mass Balance
6.3.1.5 Flux and Resident Concentrations
6.3.2 Convection-Dispersion Model
6.3.2.1 Dimensionless Parameters
6.3.2.2 Flux Concentrations
6.3.2.3 Boundary Conditions
6.3.2.4 Analytical Solutions
6.3.2.5 Moments
6.3.3 Nonequilibrium Models
6.3.3.1 Two-Region Model
6.3.3.2 Two-Site Model
6.3.3.3 General Nonequilibrium Formulation
6.3.3.4 Analytical Solutions and Moments
6.3.3.5 Additional Nonequilibrium Formulations
6.3.4 Stochastic-Convective Model
6.3.4.1 Transfer Function Modeling
6.3.4.2 Stochastic-Convective Transfer Function Model
6.3.4.3 Convective Lognormal Transfer Function Model
6.3.4.4 Field Applications
6.3.4.5 Comments
6.3.5 Transport Equation Generalizations
6.3.6 References
6.4 Solute Transport: Experimental Methods TODD H. SKAGGS, G. V. WILSON, PETER J. SHOUSE,
AND FEIKE J. LEIJ
6.4.1 Laboratory
6.4.1.1 Introduction
6.4.1.2 Sample Collection and Preparation
6.4.1.3 Apparatus
6.4.1.4 Displacing and Resident Solutions
6.4.1.5 Procedures
6.4.1.6 Calculations and Data Presentation
6.4.1.7 Additional Apparatuses
6.4.1.8 Additional Procedures
6.4.1.9 Comments
6.4.2 Field
6.4.2.1 Introduction
6.4.2.2 Water and Solute Application
6.4.2.3 Solute Monitoring and Measurement
6.4.3 Tracers
6.4.4 Equipment Sources
6.4.5 References
6.5 Solute Transport: Data Analysis and Parameter Estimation TODD H. SKAGGS, D.B. JAYNES, R.
GARY KACHANOSKI, PETER J. SHOUSE, AND A.L. WARD,
6.5.1 Least-Squares Fitting, TODD H. SKAGGS AND PETER J. SHOUSE
6.5.1.1 Principles
6.5.1.2 Software
6.5.1.3 Convection-Dispersion Model
6.5.1.4 Nonequilibrium Models
6.5.1.5 Transient Water Flow and Depth-Dependent Water Content
6.5.2 Method of Moments TODD H. SKAGGS AND PETER J. SHOUSE
6.5.2.1 Principles and Procedures
6.5.2.2 Example
6.5.2.3 Recommendations
6.5.3 Determination of IM and Using a Disk Permeameter and Multiple Solutes D.B. JAYNES
6.5.3.1 Principles
6.5.3.2 Procedure
6.5.3.3 Example
6.5.4 Determination of Travel-Time Probability Density Function from Concentration Data TODD H.
SKAGGS
6.5.5 Determination of Field Solute Mass Flux (Travel Time Probability Density Function) Using Time
Domain Reflectometry R. GARY KACHANOSKI AND A.L. WARD
6.5.5.1 Principles
6.5.5.2 Vertically Installed Probes
6.5.5.3 Equipment and Methodology
6.5.6 References
6.6 Solute Transport During Variably Saturated Flow--Inverse Methods JIRKA ŠIMNEK, MARTINUS TH.
VAN GENUCHTEN, DIEDERIK JACQUES, JAN W. HOPMANS, MITSUHIRO INOUE, AND MARKUS
FLURY
6.6.1 Introduction
6.6.2 Theory of Flow, Transport, and Optimization
6.6.3 Examples
6.6.3.1 Steady-State Laboratory Flow Experiment with Nonlinear Transport
6.6.3.2 Laboratory Transport Subject to Flow Interruption
6.6.3.3 Transient Laboratory Experiment with Equilibrium Solute Transport
6.6.3.4 Field Experiment with Nonequilibrium Solute Transport
6.6.4 Conclusions
6.6.5 References
6.7 Processes Governing Transport of Organic Solutes SHARON K. PAPIERNIK, J. GAN, AND S. R.
YATES
6.7.1 Phase Transfer and Distribution Coefficients
6.7.1.1 Air-Water Distribution
6.7.1.2 Soil-Water Distribution
6.7.1.3 Soil-Air Distribution
6.7.1.4 Implications of Soil-Water-Air Distribution on Solute Transport
6.7.2 Transformation
6.7.2.1 Chemical Transformation
6.7.2.2 Biological Degradation
6.7.2.3 Photodegradation
6.7.2.4 Implications of Transformation on Solute Transport
6.7.3 References
6.8 Microbial Transport YAN JIN, MARYLYNN V. YATES, AND S.R. YATES,
6.8.1 Introduction
6.8.1.1 Parasites
6.8.1.2 Bacteria
6.8.1.3 Viruses
6.8.2 Laboratory Methods
6.8.2.1 Batch Equilibration Method
6.8.2.2 Flowthrough Columns
6.8.3 Field Studies
6.8.4 Indicators of Human Enteroviruses
6.8.5 Microbial Transport Modeling
6.8.6 References
6.9 Geochemical Transport JIÍ ŠIMNEK AND ALBERT J. VALOCCHI
6.9.1 Introduction
6.9.2 Geochemical Reaction Equations
6.9.2.1 Complexation
6.9.2.2 Cation Exchange Reactions
6.9.2.3 Adsorption Reactions
6.9.2.4 Precipitation-Dissolution
6.9.2.5 Reactions with Organic Matter and Effects of Bacteria
6.9.2.6 Activity Coefficients and Thermodynamic Equilibrium Constants
6.9.3 Mass-Balance Transport Equations
6.9.4 Numerical Implementation
6.9.5 Effects of Solution Composition on Hydraulic Properties and Reclamation Models
6.9.6 Applications
6.9.7 Use of Geochemical Transport Models
6.9.8 References
Chapter 7 Multi-Fluid Flow
7.1 Introduction R.J. LENHARD, M. OOSTROM, AND J.H. DANE
7.2 Fluid Contents M. OOSTROM, J.H. DANE, AND R.J. LENHARD
7.2.1 Introduction
7.2.2 Nondestructive Measurements
7.2.2.1 Gamma Radiation
7.2.2.2 X-ray Radiation
7.2.2.3 Other Methods
7.2.3 Destructive Measurements
7.3 Saturation-Pressure Relationships R.J. LENHARD, J.H. DANE, AND M. OOSTROM
7.3.1 Introduction
7.3.2 Air-Nonaqueous Phase Liquid Systems
7.3.3 Two Immiscible Liquids
7.3.4 Air and Two Immiscible Liquids
7.4 Relative Permeability Measurements J.H. DANE, R.J. LENHARD, AND M. OOSTROM
7.4.1 Introduction
7.4.2 Nonaqueous Phase Liquid-Gas Systems
7.4.3 Nonaqueous Phase Liquid-Water Systems
7.4.3.1 Theory
7.4.3.2 Equipment and Measurements
7.4.3.3 Summary and Comments
7.5 Prediction of Capillary Pressure-Relative Permeability Relations R.J. LENHARD, M. OOSTROM, AND
J.H. DANE
7.5.1 Introduction
7.5.2 Extending Two-Phase Saturation-Pressure Relations to Air-Nonaqueous Phase Liquid-Water Systems:
Nonhysteretic
7.5.3 Extending Two-Phase Saturation-Pressure Relations to Air-Nonaqueous Phase Liquid-Water Systems:
Hysteretic
7.6 Measuring Interfacial Areas of Immiscible Fluids K. PRASAD SARIPALLI, P.S.C. RAO, AND
MICHAEL D. ANNABLE
7.6.1 Introduction
7.6.2 Experimental Techniques for the Measurement of Interfacial Areas
7.6.2.1 Trapped Nonwetting Phase
7.6.2.2 Continuous Nonwetting Phase
7.6.3 Water Saturation-Interfacial Area Relationship
7.6.4 Comments
7.7 References
Chapter 8 Soil Erosion by Water and Tillage M.J.M. RÖMKENS, SETH M. DABNEY, GERARD
GOVERS, AND J.M. BRADFORD
8.1 Introduction
8.2 Soil Erosion by Water
8.2.1 Soil Erosion Measurements
8.2.1.1 Monitoring Erosion during Natural Storm Events
8.2.1.2 Erosion Measurements during Simulated Rain Storms
8.2.1.3 Experimental Area
8.2.2 Soil Erosion Prediction
8.2.2.1 USLE-RUSLE Relationships
8.2.2.2 Water Erosion Protection Project Soil Erosion Prediction Relationship
8.3 Tillage Erosion
8.3.1 Experimental Measurement of Tillage Erosion using Tracers
8.3.1.1 Principle
8.3.1.2 Equipment, Software, and Supplies
8.3.1.3 Procedural Steps
8.3.2 Measurement of Tillage Erosion by Volumetric Assessment of Soil Translocation
8.3.2.1 Principle
8.3.2.2 Equipment, Software, and Supplies
8.3.2.3 Procedural Steps
8.3.3 Estimation of Tillage Erosion from Cesium-137 Inventories
8.3.3.1 Principle
8.3.3.2 Equipment, Software, and Supplies
8.3.3.3 Procedural Steps
8.4 References
Subject Index